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Charged donor–acceptor [3]catenanes comprising the p-accept-
ing cyclobis(paraquat-4,4 0-biphenylene) and p-donating aro-

matic crown ether macrocycles have been prepared in high

yields using thermodynamically controlled dynamic nucleophilic

substitution.

Mechanically interlocked and topologically non-trivial mole-

cules, known as catenanes, have attracted considerable atten-

tion as synthetic targets1 and—more recently—as proposed

and realised components of functioning molecular devices,

such as switches,2 unidirectional motors,3 and electronic dis-

plays.4 Traditional catenane syntheses—dominated by kineti-

cally controlled reactions—often employ noncovalent bonding

interactions to organise the precursors into an arrangement

optimal for the catenation.5 Kinetic control comes with the

caveat of irreversibility—that is, if starting materials ‘‘mis-

react’’ and form undesired side-products, they are effectively

wasted. On the other hand, formation of catenanes under

thermodynamically controlled conditions6 appears advanta-

geous as (1) the inherent thermodynamic stabilisation of the

catenane versus its constituent rings, brought about by the

favourable noncovalent bonding interactions, strongly favours

the catenane in the equilibrium mixture, and (2) the portion of

the starting materials that initially undergoes side reactions is

repeatedly recycled until equilibrium is established.

We have recently disclosed7 the thermodynamically con-

trolled preparation of donor–acceptor [2]catenanes based on

crown ether p-donor rings and cyclobis(paraquat-p-pheny-

lene) (14+, Fig. 1) as the p-acceptor ring. In this communica-

tion, we report the extension of the above protocol to the

larger [3]catenanes—a first step towards the application of this

methodology to the template-directed synthesis8 of the elusive

donor–acceptor polycatenanes.

Cyclobis(paraquat-p-phenylene)9 (14+) is a tetracationic

cyclophane capable of binding electron-rich arenes—exclu-

sively with 1 : 1 stoichiometries—within its electron-poor

cavity. Formation of higher donor–acceptor [n]catenanes ne-

cessitates larger p-accepting rings, such as cyclobis(paraquat-

4,40-biphenylene)10 (24+). Its extended cavity allows the for-

mation of 1 : 2 complexes with electron-rich arenes, and,

consequently, the construction11 of [3]catenanes. The presence

of reactive benzylic positions in both 1
4+ and 2

4+ makes the

two tetracationic cyclophanes analogous in their reactivities

and so we set out to explore the accuracy of this analogy

by pursuing the thermodynamically controlled assembly of

[3]catenanes from 2
4+.

More specifically, we envisioned that the formation of

[3]catenanes from 24+ would proceed by the mechanism

proposed in Scheme 1. Tetrabutylammonium iodide (TBAI)

would act initially as a nucleophile, opening up the tetra-

cationic cyclophane 24+ into the p-accepting tricationic spe-

cies 33+. Coordination of 33+ with a crown ether, such as 4,

would provide the intermediate [2]pseudorotaxane [3 C 4]3+;

subsequent coordination of an additional molecule of 4 would

give rise12 to [3]pseudorotaxane [3 C 42]
3+. Finally, reverse

nucleophilic attack of pyridyl nitrogen onto the benzylic

position in [3 C 42]
3+ would create the [3]catenane 5

4+,

regenerating the catalyst, the iodide ion, in the process.

Experiments have proven this hypothesis to be correct.

Exposure of 2�4PF6 to two equivalents of bisparaphenyle-

ne[34]crown-10 (4a)13 and TBAI (30 mol%) in acetonitrile-d3
(CD3CN) for 72 h at 80 1C resulted in a deep red solution.14

After purification by preparative thin layer chromatography

(TLC), the [3]catenane 5a�4PF6 (ref. 11) was obtained in 84%

yield, as a red solid. An analogous experiment, beginning with

2 and dinaphtho[38]crown-1015 (4b) afforded the purple

[3]catenane11 5b�4PF6 in 91% yield. Because of the (co-)con-

formational processes that occur in 5a�4PF6 and 5b�4PF6, their

room-temperature 1H NMR spectra are broadened and not

easy to interpret, a situation that prevented us from monitor-

ing the reaction progress directly. Nevertheless, after isolation,

both catenanes were unambiguously characterised by the

comparison of their ESI MS and low-temperature (�70 1C)
1H NMR spectra with the previously reported spectra.

In conclusion, we have shown that the thermodynamically

controlled syntheses of [3]catenanes proceeds in yields that are

comparable7 with those obtained in the preparation of their

smaller congeners. This undiminished efficiency, using ther-

modynamically controlled conditions for the preparation of

Fig. 1 Tetracationic cyclophanes used in the construction of do-

nor–acceptor catenanes: cyclobis(paraquat-p-phenylene) (14+) and

cyclobis(paraquat-4,40-biphenylene) (24+). Red dashed rectangles

indicate approximate binding sites for electron-rich arenes.
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[3]catenanes, makes dynamic nucleophilic substitution a pro-

mising synthetic method for accessing polycatenanes of the

donor–acceptor type, starting from cyclobis(paraquat-4,4 0-

biphenylene) and larger crown ether rings.
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